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bstract

he effects of Cu and Zn co-doping on Ni–Mn–O spinel-structured NTC ceramics were investigated. Dense Cu and Zn co-doped
i0.5Mn2.5O4 spinel-structured ceramics were prepared from mixed oxalate-derived powders. XPS analysis revealed that in the co-doped material
uxZn1.0Ni0.5Mn1.5−xO4, the majority of Cu ions resided at the B-sites due to the almost exclusive occupation of Zn ions at the A-sites, but in the

aterial doped with Cu alone, Cu ions were situated at both A- and B-sites. The co-doped material exhibited a significant decrease in electrical

esistivity without much decrease in the thermal constant. In comparison with the material doped with Cu alone, the co-doped material also showed
uch improved electrical stability upon annealing at 150 ◦C in air, which is attributed to its stable distribution of cations in the spinel.
2007 Elsevier Ltd. All rights reserved.
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. Introduction

Negative temperature coefficient (NTC) thermistors are
hermally sensitive resistors whose resistance decreases with
ncreasing temperature. There is a large choice of NTC mate-
ials, and the mostly used materials are Ni- and Mn-based
pinel oxides of general formula AB2O4 such as Cu–Ni–Mn–O,
i–Mn–O and Fe–Ni–Mn–O.1–3 In the spinel, oxide ions are

ubic close packed and cations are situated at the tetrahe-
ral (A) and octahedral (B) sites. The electrical conduction
n the spinel oxides is generally described by a small polaron
opping mechanism. The specific resistivity of these ceramics
ollows the well known Arrhenius relation: ρ = ρ0 exp(Ea/kT),
n which ρ is the specific resistivity, Ea the activation energy,

the Boltzmann’s constant and T is the absolute tempera-

ure. Two parameters are used to characterize NTC thermistor

aterials, ρ25 ◦C, the specific resistivity at 25 ◦C, and B
=Ea/k), the thermal constant (unit in K) which is a mea-
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ure of the sensitivity of the device over a given temperature
ange.

There is a demand for NTC thermistors with low elec-
rical resistance and acceptable stability. It has been
ound that the doping of Cu to the Mn-based spinel
xide leads to a sharp decrease in the electrical resis-
ivity, but unfortunately at the expense of the stability.4

here have been some studies conducted on these Cu-
oped systems in terms of the valence and site occupancy
f cations and electrical conduction mechanism. Based
n the X-ray diffraction (XRD) studies on powders of
n2.6−xCo0.4CuxO4, Legros et al. suggested a cationic dis-

ribution (Mn0.6−x
2+Co0.4

2+Cux
+)A[Mn2−x

3+Mnx
4+]BO4

2−
or 0 ≤ x ≤ 0.6, and (Co0.4

2+Cu0.6
+)A[Cux−0.6

2+Mn2.6−2x
3+

nx
4+]O4

2− for 0.6 ≤ x ≤ 1.5 They further suggested that the
ccupation of Mn3+ and Mn4+ cations on the B-sites forms
mall polaron pathways, but did not take into account the effect
f Cu ions per se on the electrical conduction process. By using

owder neutron diffraction, thermogravimetric measurements
nd XPS spectroscopy analysis, Elbadraoui et al. arrived at the
ollowing cationic distribution (Mn0.616

2+Cu0.360
2+Cu0.024

+)A
Ni0.660

2+Mn0.604
3+Mn0.710

4+Cu0.026
2+]BO4

2− for Cu0.41
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XRD analysis shows that a single-phase oxide of spinel struc-
ture has been formed after calcination of the mixed oxalates at
a relatively low temperature of 800 ◦C in air (Fig. 1). Fig. 2
presents the dilatometer curves of a compact of the as-prepared
6 C. Zhao et al. / Journal of the Euro

i0.66Mn2.93O4, and proposed that Cu2+ ions at the A-sites take
art in the electron conduction process.1

It has also been shown that the substitution of part of Mn by
n in nickel manganites can improve the stability of the spinel
tructure against oxidation reaction.6 Therefore, the effects of
u and Zn co-doping are examined in this paper. XRD and XPS
easurement were used to determine the valence and site occu-

ancy of cations, and the electrical properties of the materials
ere investigated in relation to the distributions of cations.

. Experimental

The mixed oxalate precursors for CuxZn1.0Ni0.5Mn1.5−xO4
nd CuxNi0.5Mn2.5−xO4 were prepared using the solid-
tate coordinate reaction method.2 Analytical grade
ickel acetate Ni(CH3COO)2·4H2O, manganese acetate
n(CH3COO)2·4H2O, copper acetate Cu(CH3COO)2·H2O,

inc acetate Zn(CH3COO)2·2H2O and oxalic acid were used as
tarting materials. A mixture of these acetates and oxalic acid
ith a molar ratio of total metal ions: oxalic acid of 1:1.1 was
illed at room temperature for 5 h in a polyethylene container

sing zirconia balls as milling medium with a small amount of
thanol as the dispersion agent. The as-prepared mixed oxalate
as then calcined at 800 ◦C in air for 4 h. The as-obtained
owders were blended with an organic binder (PVA, n = 1750,
hanghai Chemical Reagent Co. Ltd., China) and sieved.
isk-shaped powder compacts of diameter 5 mm and thickness
mm were formed by uniaxial pressing at 60 MPa followed by

sostatically pressing at 300 MPa. The powder compacts were
eated in air to 400 ◦C at a rate of 100 ◦C/h and kept at that
emperature for 2 h to remove the organic binder, and heated to
050 ◦C at a rate of 120 ◦C/h and kept at that temperature for
h for sintering, and then furnace-cooled to room temperature.

The densification behavior of the powder was studied with a
ilatometer (Netzsch DIL 402C, Germany) in an air flow at a
eating rate of 5 ◦C/min using a cylindrical powder compact of
ength 1 cm and diameter 0.5 cm.

The calcined oxide powder and sintered ceramics were ana-
yzed using XRD with a Philips X-Pert diffractometer using Cu
� radition (λ = 0.15418 nm). (In order to ensure that the sin-

ered ceramics for XRD analysis had the same thermal history
s those for electrical measurements, they were heat treated at
50 ◦C in air for 20 min.) The lattice parameters were fitted by
he Powdercell software using the least squares method. The
ensity ρ was measured using Archimedes method in mercury.
he relative density ρrel was determined according to the for-
ula ρrel = ρ/ρth, where ρth is the theoretical density calculated

rom the lattice parameter as obtained from the XRD result.
X-ray photoelectron (XPS) spectra were acquired with a

G ESCALAB MK II spectrometer using Al K� radiation.
he residual pressure in the ion-pumped analysis chamber was
aintained below 5 × 10−10 mbar during data acquisition. The

inding energies (BE) were referenced to the C 1s peak at 285 eV.

he microstructures of the sintered ceramics were observed with
Hitachi X-600 scanning electron microscope (SEM).

For measuring the electrical resistance, the two opposite
ides of the sintered disks were polished and coated with plat-

F
o

ig. 1. XRD patterns of Cu0.2Zn1.0Ni0.5Mn1.3O4 powders calcined at 800 ◦C in
ir.

num paste, heated at 850 ◦C for metallization and quenched
o room temperature. Silver wires were attached as electrode
eads. The electrical resistances were measured at 25 and 50 ◦C
y a two-probe technique with an Agilent34401A digital mul-
imeter. The thermal constant B was calculated according to
he formula B = 3853.89 ln(R25/R50), in which R25 and R50 are
he resistances at 25 and 50 ◦C, respectively. After these mea-
urements, the samples were tested for aging by keeping them
n an oven at 150 ◦C in air for 1000 h. Aging is defined by

R/R0 = (R − R0)/R0, in which R0 is the resistivity at 25 ◦C
efore the aging test, and R is the resistivity at 25 ◦C after the
ging test.

. Result and discussion

.1. Preparation of powders and ceramics
ig. 2. Dilatometric curves of Cu0.2 Zn1.0Ni0.5Mn1.3O4 measured at a heating
f 5 ◦C/min in air.
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ig. 3. XRD patterns of sintered ceramics (a) CuxZn1.0Ni0.5Mn1.5−xO4 and (b)
uxNi0.5Mn2.5−xO4.

owder Cu0.2Zn1.0Ni0.5Mn1.3O4. It can be seen that the densifi-
ation starts to occur at ∼750 ◦C, and a maximum shrinkage rate
s attained at 965 ◦C at which the linear shrinkage of the com-
act is about 7.7%. For both compacts CuxZn1.0Ni0.5Mn1.5−xO4
nd CuxNi0.5Mn2.5−xO4, an isothermal sintering temperature
f 1050 ◦C was chosen, which is about 100 ◦C higher than the
emperature of maximum shrinkage. After sintering at that tem-
erature for 4 h, a relative density over 95% was obtained for all
eramics.

.2. Structure and cation distribution over the spinel lattice

Fig. 3 gives the powder XRD patterns of sintered ceram-
cs Zn1.0CuxNi0.5Mn1.5−xO4 and CuxNi0.5Mn2.5−xO4. For
n1.0CuxNi0.5Mn1.5−xO4, a tetragonal distorted spinel structure

s formed at a low Cu content (x ≤ 0.1), and a cubic spinel struc-
ure at a higher x of 0.2. ZnO starts to appear at x of 0.3, and NiO

nd CuO also show up at x of 0.4. As to CuxNi0.5Mn2.5−xO4,
tetragonal distorted spinel structure is also formed at low Cu

ontent, which is also transformed to the cubic structure at higher
u content. The as-observed phase transformation is attributed

M
s
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o the Jahn-Teller effect which is induced by the Mn3+ at the B-
ites.7 With increasing Cu content x, the concentration of Mn3+

s decreased and thus the Jahn-Teller effect becomes less pro-
ounced, resulting in transformation from the tetragonal to cubic
tructure.

Fig. 4 presents the Cu2p3/2 XPS spectra. With XPS,
t is possible to distinguish between Cu ions at the A-
nd B-sites in the spinel. For the binding energy in
he Cu2p3/2 region, the following sequence is established:
u2+(A) > Cu2+(B) > Cu+(A) > Cu+(B).8 Previous studies on
u-doped manganite spinels showed that the peak at 930.7 eV
ould be assigned to Cu+(A), the peak at 933.0 eV to Cu2+(B)
nd the peak at 934.9 eV to Cu2+(A).9,10 The XPS spectra shown
n Fig. 4 are de-convoluted and assigned. For the Cu and Zn
o-doped system Zn1.0CuxNi0.5Mn1.5−xO4, at x of 0.2, a large
eak appears at 933.6 eV, which is assigned to Cu2+(B), and
small peak may be present at 930.8 eV, which corresponds

o Cu+(A). Note that the intensity of the former is 95.8%, much
tronger than that of the latter (4.2%), revealing that the majority
f Cu ions exist as Cu2+(B). At a higher x of 0.4, only one peak
xists at 934.2 eV, indicating that all the Cu ions now have con-
erted to Cu2+. But for the Zn-free system CuxNi0.5Mn2.5−xO4,
hree peaks with comparable intensity are observed. Unlike the
u and Zn co-doped system, the Cu ions now can take var-

ous valence and positions (see Table 1). Peak 1 (∼931 eV) is
ssigned to Cu+(A), peak 2 to Cu2+(B), and peak 3 (934.7 eV) to
u2+(A).

The site occupancy is of vital importance to the under-
tanding of the electrical properties and the stability of the
pinel-structured oxides. And numerous studies have been con-
ucted regarding the distribution of Ni, Mn and Zn in the spinel
xides.11 From these studies and the XPS analysis presented
bove, we propose a cation distribution of (Zn1−a

2+Cua
+)A

Zna
2+Cux−a

2+Ni0.5
2+Mn0.5+a+x

4+Mn1−a−2x
3+]BO4

2− (a
0.01) for Zn1.0CuxNi0.5Mn1.5−xO4 system, and

Mn1.0−a−b
2+Cua

+Cub
2+)A[Cux−a−b

2+Ni0.5
2+Mn0.5−b+x

4+
n1+a+2b−2x

3+]BO4
2− for the Zn-free system

uxNi0.5Mn2.5O4, in which a = 0.09 and b = 0.07 at x of
.2 and a = 0.20 and b = 0.12 at x of 0.4.

The electron microscope images of Cu0.4Ni0.5Mn2.1O4
nd Zn1.0Cu0.4Ni0.5Mn1.1O4 ceramics are shown in Fig. 5.
n comparison with the Cu and Zn co-doped sample,
u0.4Ni0.5Mn2.1O4 contains large (closed) pores. Previous stud-

es have shown that Cu2+ in solid state can be easily reduced to
u+ at temperatures above 1050 ◦C in air.12 And the reduction
f Cu2+ to Cu+ leads to the emission of O2, leaving pores in
he ceramics. However, for the Cu and Zn co-doped system, the
eduction reaction is retarded, because the A-sites preferred for
he Cu+ ions have been almost exclusively occupied by the Zn2+

ons.

.3. Electrical properties
Fig. 6 shows the specific resistivity of CuxZn1.0Ni0.5-
n1.5−xO4 and CuxNi0.5Mn2.5−xO4 measured at 25 ◦C. It can be

een that the resistivity for CuxZn1.0Ni0.5Mn1.5−xO4 decreases
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Fig. 4. XPS spectra in the Cu2p3/2 region of (a) Cu0.2Zn1.0Ni0.5Mn1.3O4, (

rom 3216 � cm to 1049 � cm with increasing Cu content x
rom 0 to 0.1, and then changes much less drastically with fur-
her increase in x. In contrast, the system doped with Cu alone
hows a much sharper change in the resistivity. Its resistivity is
907 � cm at x of 0, and 12.6 � cm at x of 0.4.

Fig. 7 gives the thermal constant B for these two systems.
learly, B decreases slightly with increasing x for the Cu and
n co-doped system. Its value is 3891 K at x of 0, and 3590 K
t higher x of 0.4. As to the system doped with Cu alone, the
hange in B is much more pronounced. It takes a value of 3970 K

t x of 0, and 2760 K at x of 0.4.

It is generally accepted that electrical conduction in nickel
anganite spinel is via hopping of electrons between the Mn3+

nd Mn4+ ions at the B-sites. According to this mechanism,

j
t
l
t

able 1
nalysis of the Cu2p3/2 XPS spectra of CuxNi0.5Mn2.5−xO4

ample Peak 1 (Cu+(A)) Peak

E (±0.1 eV) I (±0.5%) E (±
u0.2Ni0.5Mn2.3O4

a 931.0 43.6 932.
u0.4Ni0.5Mn2.1O4

a 931.3 50.7 933.
u0.4Ni0.5Mn2.1O4

b 931.3 43.9 933.

a As-prepared.
b After annealing at 150 ◦C in air for 1000 h.
0.4Zn1.0Ni0.5Mn1.1O4, (c) Cu0.2Ni0.5Mn2.3O4, and (d) Cu0.4Ni0.5Mn2.1O4.

he electrical resistivity ρ of the material is inversely pro-
ortional to the concentration product of Mn3+ and Mn4+.1

ccording to the cationic distributions given in the previous
ection of this paper, [Mn3+][Mn4+] takes a value of 0.419
or Cu0.2Zn1.0Ni0.5Mn1.3O4 and 0.523 for Cu0.2Ni0.5Mn2.3O4.
bviously, the small difference in the concentration product
etween these two systems can not account for their large dif-
erence in electrical resistivity, and thus there must exist some
ther electrical conduction mechanism. It has been suggested by
lbadraoui et al. that electron conduction may also proceed via

3+ 4+
umping between Mn and Mn ions on more distant B-sites
hrough Cu+ and Cu2+ ions at the A-sites.1 Therefore, we specu-
ate here that the difference in the distribution of Cu ions between
he Zn-containing and Zn-free systems is responsible for the

2 (Cu2+(B)) Peak 3 (Cu2+(A))

0.1 eV) I (±0.5%) E (±0.1 eV) I (±0.5%)

8 20.7 934.7 35.7
5 19.7 934.7 29.6
9 30.5 934.8 25.6
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the electrical stability of the Zn-containing system. Moreover,
ig. 5. SEM images of (a) Cu0.4Zn1.0Ni0.5Mn1.1O4 and (b) Cu0.4Ni0.5Mn2.1O4

eramics.

ifference in their electrical properties, and further research is

eeded in this regard.

Fig. 8 shows the resistivity drift for CuxZn1.0Ni0.5Mn1.5−xO4
nd CuxNi0.5Mn2.5−xO4 after annealing at 150 ◦C in air for
000 h. It can be seen that the drift is less than 2.6% for the

ig. 6. Electrical resistivity of (a) CuxZn1.0Ni0.5Mn1.5−xO4 and (b) CuxNi0.5

n2.5−xO4.

t
Z
o

F
M

ig. 7. Thermal constant B for (a) CuxZn1.0Ni0.5Mn1.5−xO4 and (b)
uxNi0.5Mn2.5−xO4.

u and Zn co-doped system, but it is much larger for the sys-
em doped with Cu alone. It has been reported that Cu+ ions at
he A-sites are oxidized to Cu2+ ions by the atmospheric oxy-
en at temperatures below ∼300 ◦C, which is followed by the
igration of Cu ions from the A to the B-sites.13 In the present

tudy, the oxidation reaction is also verified by the XPS analysis
n Cu0.4Ni0.5Mn2.1O4. It can be seen clearly that annealing at
50 ◦C has led to a significant decrease in the number of Cu+

ons at the A-sites and to an increase in the number of Cu2+ ions
t the B-sites (Table 1 and Fig. 9). These changes in the valence
nd site occupancy of the cations certainly will affect the elec-
rical properties of the materials. For the Zn-doped system, due
o the (almost) exclusive occupation of Zn2+ ions at the A-sites,
he majority of Cu ions reside at the B-sites and these ions have
fixed valence of 2+. The invariability of the valence and site
ccupation of the Cu ions is likely to be largely responsible for
he Zn-doped material does not contain the large pores of the
n-free material (see Fig. 5), thus the adsorption of atmospheric
xygen and subsequent oxidation of Cu+ ions is retarded.

ig. 8. Resistivity drifts of (a) CuxZn1.0Ni0.5Mn1.5−xO4 and (b) CuxNi0.5

n2.5−xO4.
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ig. 9. XPS spectra in the Cu2p3/2 region of Cu0.4Ni0.5Mn2.1O4 measured (a)
efore and (b) after annealing at 150 ◦C in air for 1000 h.

. Conclusion

Dense Cu and Zn co-doped Ni0.5Mn2.5O4 spinel-structured
eramics have been prepared from mixed oxalate-derived pow-
er. Doping with both Cu and Zn in Ni0.5Mn2.5O4 leads to a
istribution of cations in which Zn ions occupy the A-sites,
orcing the Cu ions to reside predominantly at the B-sites. The
o-doped material exhibits a reduced electrical resistivity with-
ut much decrease in the thermal constant. In comparison with
he material doped with Cu alone, the co-doped material also
hows much improved electrical stability upon annealing at ele-
ated temperature of 150 ◦C in air, which is attributed to the
ore stable distribution of cations in the spinel.
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